Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phylogenomic Analysis and Dynamic Evolution of Chloroplast Genomes in Salicaceae.

Identifieur interne : 001265 ( Main/Exploration ); précédent : 001264; suivant : 001266

Phylogenomic Analysis and Dynamic Evolution of Chloroplast Genomes in Salicaceae.

Auteurs : Yuan Huang [République populaire de Chine] ; Jun Wang [États-Unis] ; Yongping Yang [République populaire de Chine] ; Chuanzhu Fan [États-Unis] ; Jiahui Chen [République populaire de Chine]

Source :

RBID : pubmed:28676809

Abstract

Chloroplast genomes of plants are highly conserved in both gene order and gene content. Analysis of the whole chloroplast genome is known to provide much more informative DNA sites and thus generates high resolution for plant phylogenies. Here, we report the complete chloroplast genomes of three Salix species in family Salicaceae. Phylogeny of Salicaceae inferred from complete chloroplast genomes is generally consistent with previous studies but resolved with higher statistical support. Incongruences of phylogeny, however, are observed in genus Populus, which most likely results from homoplasy. By comparing three Salix chloroplast genomes with the published chloroplast genomes of other Salicaceae species, we demonstrate that the synteny and length of chloroplast genomes in Salicaceae are highly conserved but experienced dynamic evolution among species. We identify seven positively selected chloroplast genes in Salicaceae, which might be related to the adaptive evolution of Salicaceae species. Comparative chloroplast genome analysis within the family also indicates that some chloroplast genes are lost or became pseudogenes, infer that the chloroplast genes horizontally transferred to the nucleus genome. Based on the complete nucleus genome sequences from two Salicaceae species, we remarkably identify that the entire chloroplast genome is indeed transferred and integrated to the nucleus genome in the individual of the reference genome of P. trichocarpa at least once. This observation, along with presence of the large nuclear plastid DNA (NUPTs) and NUPTs-containing multiple chloroplast genes in their original order in the chloroplast genome, favors the DNA-mediated hypothesis of organelle to nucleus DNA transfer. Overall, the phylogenomic analysis using chloroplast complete genomes clearly elucidates the phylogeny of Salicaceae. The identification of positively selected chloroplast genes and dynamic chloroplast-to-nucleus gene transfers in Salicaceae provide resources to better understand the successful adaptation of Salicaceae species.

DOI: 10.3389/fpls.2017.01050
PubMed: 28676809
PubMed Central: PMC5476734


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phylogenomic Analysis and Dynamic Evolution of Chloroplast Genomes in Salicaceae.</title>
<author>
<name sortKey="Huang, Yuan" sort="Huang, Yuan" uniqKey="Huang Y" first="Yuan" last="Huang">Yuan Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of SciencesKunming, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of SciencesKunming</wicri:regionArea>
<wicri:noRegion>Chinese Academy of SciencesKunming</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences, Yunnan Normal UniversityKunming, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Sciences, Yunnan Normal UniversityKunming</wicri:regionArea>
<wicri:noRegion>Yunnan Normal UniversityKunming</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jun" sort="Wang, Jun" uniqKey="Wang J" first="Jun" last="Wang">Jun Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, Wayne State University, DetroitMI, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Wayne State University, DetroitMI</wicri:regionArea>
<wicri:noRegion>DetroitMI</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Yongping" sort="Yang, Yongping" uniqKey="Yang Y" first="Yongping" last="Yang">Yongping Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of SciencesKunming</wicri:regionArea>
<wicri:noRegion>Chinese Academy of SciencesKunming</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fan, Chuanzhu" sort="Fan, Chuanzhu" uniqKey="Fan C" first="Chuanzhu" last="Fan">Chuanzhu Fan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, Wayne State University, DetroitMI, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Wayne State University, DetroitMI</wicri:regionArea>
<wicri:noRegion>DetroitMI</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Jiahui" sort="Chen, Jiahui" uniqKey="Chen J" first="Jiahui" last="Chen">Jiahui Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of SciencesKunming, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of SciencesKunming</wicri:regionArea>
<wicri:noRegion>Chinese Academy of SciencesKunming</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of SciencesKunming</wicri:regionArea>
<wicri:noRegion>Chinese Academy of SciencesKunming</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28676809</idno>
<idno type="pmid">28676809</idno>
<idno type="doi">10.3389/fpls.2017.01050</idno>
<idno type="pmc">PMC5476734</idno>
<idno type="wicri:Area/Main/Corpus">001258</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001258</idno>
<idno type="wicri:Area/Main/Curation">001258</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001258</idno>
<idno type="wicri:Area/Main/Exploration">001258</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Phylogenomic Analysis and Dynamic Evolution of Chloroplast Genomes in Salicaceae.</title>
<author>
<name sortKey="Huang, Yuan" sort="Huang, Yuan" uniqKey="Huang Y" first="Yuan" last="Huang">Yuan Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of SciencesKunming, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of SciencesKunming</wicri:regionArea>
<wicri:noRegion>Chinese Academy of SciencesKunming</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Life Sciences, Yunnan Normal UniversityKunming, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Life Sciences, Yunnan Normal UniversityKunming</wicri:regionArea>
<wicri:noRegion>Yunnan Normal UniversityKunming</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jun" sort="Wang, Jun" uniqKey="Wang J" first="Jun" last="Wang">Jun Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, Wayne State University, DetroitMI, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Wayne State University, DetroitMI</wicri:regionArea>
<wicri:noRegion>DetroitMI</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Yongping" sort="Yang, Yongping" uniqKey="Yang Y" first="Yongping" last="Yang">Yongping Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of SciencesKunming</wicri:regionArea>
<wicri:noRegion>Chinese Academy of SciencesKunming</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fan, Chuanzhu" sort="Fan, Chuanzhu" uniqKey="Fan C" first="Chuanzhu" last="Fan">Chuanzhu Fan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, Wayne State University, DetroitMI, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Wayne State University, DetroitMI</wicri:regionArea>
<wicri:noRegion>DetroitMI</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Jiahui" sort="Chen, Jiahui" uniqKey="Chen J" first="Jiahui" last="Chen">Jiahui Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of SciencesKunming, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of SciencesKunming</wicri:regionArea>
<wicri:noRegion>Chinese Academy of SciencesKunming</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of SciencesKunming</wicri:regionArea>
<wicri:noRegion>Chinese Academy of SciencesKunming</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Chloroplast genomes of plants are highly conserved in both gene order and gene content. Analysis of the whole chloroplast genome is known to provide much more informative DNA sites and thus generates high resolution for plant phylogenies. Here, we report the complete chloroplast genomes of three
<i>Salix</i>
species in family Salicaceae. Phylogeny of Salicaceae inferred from complete chloroplast genomes is generally consistent with previous studies but resolved with higher statistical support. Incongruences of phylogeny, however, are observed in genus
<i>Populus</i>
, which most likely results from homoplasy. By comparing three
<i>Salix</i>
chloroplast genomes with the published chloroplast genomes of other Salicaceae species, we demonstrate that the synteny and length of chloroplast genomes in Salicaceae are highly conserved but experienced dynamic evolution among species. We identify seven positively selected chloroplast genes in Salicaceae, which might be related to the adaptive evolution of Salicaceae species. Comparative chloroplast genome analysis within the family also indicates that some chloroplast genes are lost or became pseudogenes, infer that the chloroplast genes horizontally transferred to the nucleus genome. Based on the complete nucleus genome sequences from two Salicaceae species, we remarkably identify that the entire chloroplast genome is indeed transferred and integrated to the nucleus genome in the individual of the reference genome of
<i>P. trichocarpa</i>
at least once. This observation, along with presence of the large nuclear plastid DNA (NUPTs) and NUPTs-containing multiple chloroplast genes in their original order in the chloroplast genome, favors the DNA-mediated hypothesis of organelle to nucleus DNA transfer. Overall, the phylogenomic analysis using chloroplast complete genomes clearly elucidates the phylogeny of Salicaceae. The identification of positively selected chloroplast genes and dynamic chloroplast-to-nucleus gene transfers in Salicaceae provide resources to better understand the successful adaptation of Salicaceae species.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">28676809</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Phylogenomic Analysis and Dynamic Evolution of Chloroplast Genomes in Salicaceae.</ArticleTitle>
<Pagination>
<MedlinePgn>1050</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2017.01050</ELocationID>
<Abstract>
<AbstractText>Chloroplast genomes of plants are highly conserved in both gene order and gene content. Analysis of the whole chloroplast genome is known to provide much more informative DNA sites and thus generates high resolution for plant phylogenies. Here, we report the complete chloroplast genomes of three
<i>Salix</i>
species in family Salicaceae. Phylogeny of Salicaceae inferred from complete chloroplast genomes is generally consistent with previous studies but resolved with higher statistical support. Incongruences of phylogeny, however, are observed in genus
<i>Populus</i>
, which most likely results from homoplasy. By comparing three
<i>Salix</i>
chloroplast genomes with the published chloroplast genomes of other Salicaceae species, we demonstrate that the synteny and length of chloroplast genomes in Salicaceae are highly conserved but experienced dynamic evolution among species. We identify seven positively selected chloroplast genes in Salicaceae, which might be related to the adaptive evolution of Salicaceae species. Comparative chloroplast genome analysis within the family also indicates that some chloroplast genes are lost or became pseudogenes, infer that the chloroplast genes horizontally transferred to the nucleus genome. Based on the complete nucleus genome sequences from two Salicaceae species, we remarkably identify that the entire chloroplast genome is indeed transferred and integrated to the nucleus genome in the individual of the reference genome of
<i>P. trichocarpa</i>
at least once. This observation, along with presence of the large nuclear plastid DNA (NUPTs) and NUPTs-containing multiple chloroplast genes in their original order in the chloroplast genome, favors the DNA-mediated hypothesis of organelle to nucleus DNA transfer. Overall, the phylogenomic analysis using chloroplast complete genomes clearly elucidates the phylogeny of Salicaceae. The identification of positively selected chloroplast genes and dynamic chloroplast-to-nucleus gene transfers in Salicaceae provide resources to better understand the successful adaptation of Salicaceae species.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Yuan</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of SciencesKunming, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Life Sciences, Yunnan Normal UniversityKunming, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Jun</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Wayne State University, DetroitMI, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Yongping</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fan</LastName>
<ForeName>Chuanzhu</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Wayne State University, DetroitMI, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Jiahui</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of SciencesKunming, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>06</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">NUPT</Keyword>
<Keyword MajorTopicYN="N">Salicaceae</Keyword>
<Keyword MajorTopicYN="N">chloroplast genome</Keyword>
<Keyword MajorTopicYN="N">evolution</Keyword>
<Keyword MajorTopicYN="N">organellar horizontal gene transfer</Keyword>
<Keyword MajorTopicYN="N">phylogenetic incongruence</Keyword>
<Keyword MajorTopicYN="N">phylogenomics</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>08</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>05</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28676809</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2017.01050</ArticleId>
<ArticleId IdType="pmc">PMC5476734</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2006 Nov 1;22(21):2688-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16928733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gigascience. 2012 Dec 27;1(1):18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23587118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2005 Mar;165(3):E36-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15729659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Sep 15;5(9):e12762</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20856810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Jan;13(1):207-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11158540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2006 Aug 25;6:17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16934154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2012 May;61(3):539-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22357727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Nov 22;20(17):3252-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15180927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Jan;13(1):103-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12529312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2004 Sep;91(9):1398-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21652373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19369-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18048330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Jun 15;28(12):1647-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22543367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Apr;22(2):97-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10792825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 Feb;148(2):681-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9504916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Mar;13(3):645-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11251102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2012 Dec 1;61(6):1061-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22780991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2014;21(2):127-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24170805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1989 Apr;8(4):1013-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2663467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4623-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20176954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Apr 19;277(16):14031-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11827973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1994 Sep;14(9):6171-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8065350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2005;395:348-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15865976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Apr 9;304(5668):253-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15073369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Nov;18(11):2869-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17085684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2000 Jan;87(1):67-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10636831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1998 May;15(5):568-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9580986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2014 Nov;63(6):933-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25092479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2007 Aug 28;7:147</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17725833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2013 Oct;111(4):314-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23715017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Mar;17(3):665-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15705954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2009 Aug;96(8):1551-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21628300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Apr;113(4):1185-1192</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(5):e20596</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21655229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2007 Nov 1;402(1-2):51-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17728076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2004 Feb;5(2):123-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14735123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14500911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Aug 12;9(8):e103645</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25116432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 Nov;23(11):2175-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16916942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2008 Oct;26(10):1135-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18846087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;179(1):15-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18422906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2011;3:372-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21292628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1994 Oct;6(4):503-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7987409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Sep;154(1):109-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20605914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Feb;103(4):625-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18801916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2015 Mar 04;15:31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25886526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W686-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1993 Sep;12(9):3627-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8253086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11331-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8524780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2002 Aug;267(6):713-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12207219</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Huang, Yuan" sort="Huang, Yuan" uniqKey="Huang Y" first="Yuan" last="Huang">Yuan Huang</name>
</noRegion>
<name sortKey="Chen, Jiahui" sort="Chen, Jiahui" uniqKey="Chen J" first="Jiahui" last="Chen">Jiahui Chen</name>
<name sortKey="Chen, Jiahui" sort="Chen, Jiahui" uniqKey="Chen J" first="Jiahui" last="Chen">Jiahui Chen</name>
<name sortKey="Huang, Yuan" sort="Huang, Yuan" uniqKey="Huang Y" first="Yuan" last="Huang">Yuan Huang</name>
<name sortKey="Yang, Yongping" sort="Yang, Yongping" uniqKey="Yang Y" first="Yongping" last="Yang">Yongping Yang</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Wang, Jun" sort="Wang, Jun" uniqKey="Wang J" first="Jun" last="Wang">Jun Wang</name>
</noRegion>
<name sortKey="Fan, Chuanzhu" sort="Fan, Chuanzhu" uniqKey="Fan C" first="Chuanzhu" last="Fan">Chuanzhu Fan</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001265 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001265 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28676809
   |texte=   Phylogenomic Analysis and Dynamic Evolution of Chloroplast Genomes in Salicaceae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28676809" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020